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ABSTRACT

If de Sitter's hydrostatic equations are developed independent
of the external potential theory, the hydrostatic geopotential
coefficient J, occurs explicitly on the right-hand side of those
equations. Since J, here has to be treated as an unknown in the
gsolution, it becomes rather difficult to solve the equations
independently, regardless of which of the dynamical parameters
associated with the earth is taken as the initial datum. Solution
i8 pogsible, however, with the help of a boundary condition derived
from the external potential theory which neither assumes nor discounts
the presence of equilibrium conditions in the earth's interior. If
a general solution i8 constructed on this basis, the three particular
solutions, usually quoted in literature, stem from it in the wake
of the appropriate assumptions. Of course, the only meaningful
solution--of these-- is that corresponding to the polar moment of
inertia as the initial datum. It is essential that the solution be
econstructed in this way in order to demonstrate clearly the correct
structure of the problem of hydrostatic equilibrium.

The ananalous gravity field of the earth referred to the hydro-
static figure is compared with that referred to the international
reference ellipsoid.






Introduction

The hydrostatic theory of the earth, in its present form, was
originally developed by Clairaut (1743). Radau (1885) simplified
it by making an important substitution in Clairaut's differential
equation. Originally it was hoped that a knowledge of flattening £,
dynamical flattening H, and m (defined later) would lead to some
useful information about the distribution of demsity within the earth.
The application of the theory, however, showed that with m and H
fixed, widely different laws of density led to almost the same
value of flattening (Jeffreys, 1962, page 152). This led to an impor-
tant result: if one could assume that this theory was applicable
to the real earth, i.e., if the earth was in hydrostatic equilibrium,
it would be possible to compute its flattening. This would require
a knowledge of the parameters m and H and of the distribution of
density, to compute the geopotential coefficient J. The parameters
m and H were quite well-determined. The distribution of density
was not very well-known, but this theory had indicated that the use
of a reasonable density model was adequate for the computations. An
obvious inference was that the value of flattening, obtained on the
basis of this theory for a reasonable density distribution, would give
a good approximation to the actual flattening of the earth spheroid.
Such an inference was particularly welcome at that time because a
precise determination of the geopotential coefficient J was not
possible to provide the value of flattening directly. Other methods
of determining the flattening of the earth were dependent upon gravimetric
or arc measurement data and hence had their obvious limitations. Doubts
as to the validity of the above assumption arose, however, when
Tisserand (1891) and Poincare (1910) derived fh_l = 297.3 (fh denotes
hydrostatic flattening and f real flattening) on the basis of hydro-
static theory, in contrast to the then-accepted value of f—l = 293.5
which A.R. Clark had obtained from arc measurements in 1880 (Jeffreys,
1962, p. 152). Later, Hayford (1909, 1910) and Helmert (1911), using
more extensive data, obtained f-_l = 297.0, which was quite consistent

with the value obtained from hydrostatic theory within the limits of

accuracy. This reaffirmed the then-prevalent opinion that the method of

-3-



hydrostatic theory for computing the flattening of the earth was more
accurate than any other available at that time (de Sitter, 1924, 1938;
Jeffreys, 1948, 1962; Jones, 1954). This interesting conclusion was
based on the belief that since hydrostatic equilibrium probably

existed throughout the earth's interior except for the crust and perhaps
the upper mantle, the assumption of hydrostatic equilibrium for the
whole earth was not unjustified. This belief persisted until artificial
satellites made possible the direct determination of the geopotential
coefficient J, from which the flattening f of the best-fitting spheroid
could be accurately computed using the external potential theory alomne,
without recourse to either gravimetric data or geodetic arc measurement
data or to the hydrostatic equilibrium theory. The currently accepted
value of f computed in this way is 1/298.25. Since the real flattening
and the hydrostatic flattening could now be computed independent of

each other, any discrepancy between the real flattening f and the

hydrostatic flattening f, could now be studied, and the validity of

the claim made in the pr:—satellite times that f = fh could now be
proved or disproved definitely. Henriksen (1960) used de Sitter's
equations and J = 1622.4 x 10_6 to find a value of 1/300 for hydrostatic
flattening. Jeffreys (1963), using J = 1624.17 x 10-'6 as obtained by

King-Hele, Cook and Rees (1963), found a value of 1/299.67 * 0.05 for the

hydrostatic flattening, confirming the discrepancy between f and fh
which Henriksen (1960) and 0'Keefe (1960) had initially pointed out.
Using the improved value of the constant of precession (Rabe, 1950), of
moon-earth mass ratio (1/81.303) and J = 1623.969 x 10_6 (Kozai, 1964),
I (Khan, 1967) obtained 1/299.86 * 0.05 for the hydrostatic flattening
by employing Jeffreys' (1963) approach, which has both the advantages

of speed and simplicity. In his method, Jeffreys (1963) has carried the
analytical development to first order and then applied the corrections
for the second-order terms by the numerical integration of the appro-
priate expressions. Although Jeffreys' paper outlines the structure of
the hydrostatic problem clearly, he does not use de Sitter's equations.
There has been considerable confusion regarding the computation of

hydrostatic flattening from de Sitter's hydrostatic equations which



carry the development of the theory to the second order analytically. The
general belief has been that the hvdrostatic flattening is and should be
computed from the hydrostatic part of the equations alone, to the
complete exclusion of the external potential theory. In order to
examine the validity of this belief I re-evaluated (Khan, 1968a) the
hydrostatic theory and made some modifications in de Sitter's (1924)
equations 1in order to reinstate the geopotential coefficient J which
de Sitter had eliminated from the right-hand side of his equations by
means of a relation derived from the external potential theory. This
step 18 essential in order to demonstrate the correct structure of the
problem. When de Sitter worked out his equations, the geopotential
coefficient J was not known accurately and he could presume that there
was no significant difference between the value of J for the real earth
and the value of hydrostatic J. This assumption has been proven as
incorrgct ever since. However, as will be discussed later, there is
theoretical justification for the elimination of J--but the reason that
we ought to avoild it at this stage 1s that it is so well-concealed in
the development of de Sitter's equations that it tends to obscure the
correct structure of solution of the problem of hydrostatic equilibrium.

In this report, I first give the derivation of the modified
equations followed by a description of the general solution. I then
present a review of previous methods, both pre-satellite and post-
satellite,

I wish to emphasize here that the discussion given in this report
pertains primarily to de Sitter's development of the hydrostatic theory.
The elimination of the geopotential coefficlient J from the right-hand

side of de Sitter's equations is certainly valid if the correct reason

for it is outlined clearly. However, the prevailing situation is that
it has given rise to the belief that the hydrostatic flattening can be
computed merely from the hydrostatic part of de Sitter's development of
the theory without any use whatsoever of the external potential theory
even if the only known datum used is the polar moment of inertia of the
real earth. The principal purpose of this report is to show that if

de Sitter's development is used for computing hydrostatic flattening

merely from a knowledge of the earth's polar or mean moment of inertia



(making no additional use of the satellite-determined J except in the
computation of the polar moment of inertia), some control from the

external potential theory must be introduced.

Theory of Hydrostatic Equilibrium

Development of Modified Hydrostatic Equations:
The customary manner of representing the outer potential of a
reference figure, symmetrical with reference to both an equatorial

plane and the polar axis (to the order of accuracy required here) is

GM a, 2 a,
V= — [1 - J2 - P2 (sin ¢) - J4 (——) P4 (sin ¢4
T T
+ %'mzrz cos2 $ (1)

where

G = gravitational constant

M = mass of the earth

a, = equatorial radius of the earth

w = rate of rotation of the earth

P2 (sin ¢) and P4 (sin ¢) = Legendre's polynomials

Jz and J4 = zonal harmonic coefficients in the spherical

harmonic representation of earth's potential

The radius vector of an ellipsoid of revolution can be represented

(to the order of accuracy required here) as

r=a, (o + aP,+ opP, ] (2)



where

1 1.2
ao=l-3f—-§f
2 1.2
GH=-3f-3f¢ )
12 .2
o =35 f

In the foregoing expression f is the flattening of the surface
described by Eq. (2).

Substituting r from Eqs. (2) and (3) into Eq. (1) and retaining
quantities to the 0(f2) only, we get the potential V on the surface of
the ellipsoid, i.e.,

V= Vo (GM, a, m £, J2) + 82 (GM, a_, m £, Jz)

+ Bl‘ (GM, ae9 m’ fl Jz’ Jl.)

If the ellipsoidal surface is an equipotential surface, V must be
constant on it, and the coefficients 82 and B4 must both be zero, which,

among other relations, gives us the following equation
2 1 1
= - — ——— -—-——m
Jy=5f-F +37uf -3 (4)

In the derivation of Eq. (4), no assumption is made regarding the
conditions existing in the earth's interior. Hence the equation is
valid whether or not hydrostatic equilibrium exists in the earth's
interior. Eq. (4) gives

23, .1 .15 92,32
f = 5 J, + 7 o + 28 sz + 3 J2 + 5g U (5)



Equations (4) and (5) should relate the observed J with the real
flattening in a non-hydrostatic case and the hydrostatic J with the
hydrostatic flattening for a hydrostatic case. Hence Eq. (4) or (5)
will be of the form

G 3, £) =0 (5a)

for the non~hydrostatic case and

G (Jh,fh) =0 (5b)

for the hydrostatic case.

Note that Jh and fh denote the hydrostatic J and the hydrostatic
flattening, respectively,

The real flattening of the ellipsoidal surface which best fits
the geoidis given by Eq. (5) in the form of Eq. (5a), if J for the
real earth is known accurately as, for example, from the regression of
node of an artificial earth satellite.

The condition of hydrostatic equilibrium can be represented

analytically by the differential equation

dp = 6av

where V is the sum of gravitational and rotational potential, p the pres-
sure at any point within the body and § its density. This implies

that p must be a function of V, and § either a constant or a function
’of V also. Since the equipotential surfaces are given by V = constant,
p and § will also assume a constant value, as obvious from Eq. (3).
Thus, the condition of hydrostatic equilibrium for the earth's interior
is established by stipulating that the equipotential surfaces and the

surfaces of equal density be coincident. 1If B represents the mean



radius of any such surface, expressed in terms of the outer surface as
a unit so that B ranges from 0 at the center to 1 at the outer surface,

then the equation of this surface becomes

O RO T 12,2 ]
r 3[1 L+ 25 P, (stn 9) + 3557 P, (sin 9) (6)
where

. _ 22

=t -2k

Since we are developing a second order theory and thus are not
2

! -
h and mf mf

interested in terms > O(fz), we will treat f'2 = f b
etc.
The potential V at any point (r,¢) within the earth is given by

(de Sittex, 1924):

, L LW 1 3 2 _2 -2 3
vV o= = lD(l + 2 mlo cos” ¢) 3 (So + T o) P2 (sin ¢)
12 -4 32 5
+ (35 Po 4+ EBE-QG ) P4 (sin ¢) (7N
where
o ==
B
2 3
w  a m
m = e = e
1 GM D

W = volume of the surface of which B is the mean radius



In thes
density as a

expressed in

~10-

3 8 )
= 3 _[ § 87 dB
0
8

B
1 d
- = s — |82 ' +2¢£%]| a8
5 7°h
1
d
- j s — (£ + 32 £2) ap
dp
B
B
1 d
=-—7-f s— |87 g2+ 2| a8
B 0 ds
2 1 d K
= Jf § — —E'dB
8 dg V8
e formulas § is the density, expressed in terms of mean

unit, and D is the mean density within the surface 8,

the same unit., For the outer surface

|

The condition that the surface, described by Eq. (6), be an

equipotential surface, gives as one of the relations the following:

D

(f'+£f2 l

3 = A -
T £ "2“’1)'5(5“"T) 21f(m 3T)

€:))

9
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Differentiating Eq. (9) and introducing a new variable n, defined

by
_dlog £' B df'
d log B f' dB
we get

4 A 4 - 2 _3s
n{D(1+7fh)—21m+7T 3D(1+7fh) T (9a)

With the help of Eq. (8), the above equation gives us a boundary

condition for the outer surface which can be written as

4 4 2

2
' a8 -t = 1 & - £
nsf (1+ 7 fh 71 m) 3£'(1 + 7 fh) SJh(l + 3 fh) (10)
where g denotes the surface value of n.
Again, by differentiating Eq. (9a), we can get
dn 2 - L. S
BdB +n° + 50 - 2¢(1 + n) 57 GE 0 (11
in which
e . B8 dD _s
z D dp 31 D) (11a)
and

£ =17 % (L+n) - 3fh(1 + n)2 - 4f (11b)
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Radau (1885) transformed Eq. (11) to the form

%EDBS VI + n =5 8% F(n) (12)
where
2 2
l*'zl'”"'i%” * Jo5 %6
F(n) = (12a)

F(n) has the remarkable property that it lies very near unity,
it's maximum departure being 0.0007. 1If 1 + A denotes the average

value of this function over the range of integration, we can write

B —a
f pg*ap=2 LD (13)
1+ 2
0
which, for the outer surface, assumes the form
b p Vit
,/— DB dB = 3'——-————ji (13a)

1+ 2
s

Note that ns and AS are the values of parameters n and A for the
outer surface.

Now in our units, we have



where A is the moment of inertia about the equatorial diameter. With

C - A
H =
C
L §_C - A
h 2 M a 2
e
q = 3 -
2 M a 2
e
and hence
Jpy=al ,

q=73 1-%—f +3fh2)j 5 8% dg + % J (14)
0

As stated before, if D is the mean density within the surface

B expressed in terms of the mean density as a unit, we have

or
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Substituting this value of § in Eq. (14) we get

1
- 2 L b2 1gdp) 4 ., 2
q 3 {1 3 fh + 9 fh ) J( D (l + 3D B) 8 dR + 3 J
0

-

which, with the help of Eq. (13a) can be finally transformed into

5 h h

1 +kn
- 2 2 402 _2 [, _2 4 .2 s
q=1 3 fh + 3 Jh + 9 fh 5 (l 3 fh + 9 fh ) (15)
1+ A
s
Equation (10) can be simplified to the form
b gt L6 2,4 _ 10 20
nsf 3f 7 fh + 7 m fh Jh 5+ 21 fh + o1 @ (16)
From Eq. (15) one obtains
2
2 2 4 _ 2
(l-—q-——f +=J +—f)
N = 1+ 211 3’ h 3°h 9 h ] -1 an
s s
Zl1-2¢ +8¢2
3 9

At this point, if we can assign a reasonable value to AS (for
example, AS = 0 as explained later), we can substitute Ng from

Eq. (17) into Eq. (16) and obtain an equation in J, and fh from which

h

a series of values of fh can be obtained corresponding to arbitrary

values of Jh. However, it is convenient to get an expression which

gives f explicitly in terms of other parameters. This can be done

h
by writing Eq. (17) as

n = Z% F2 q -1 (18)

s

where
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‘
q¢'=1-g¢
2 2.2
A_3(fh—Jh—3fh)
1 '
1 )
(19)
2 2 2
Az"3{fh'3fh)
F=1+2A /
8
It is instructive to note that Al and A2 are both of the order
of flattening.
Simplifying Eq. (18), one obtains
- 25 2,2 _
n, == F q [1+2(A2 a,)
(20)
2
+ Al + 3A2 - hAlAz)] -1 no + ﬂl + ﬂ2
where
-222 '2..
o A F~ q 1
_25 2 2 25 2 2 2
gt F AT (8, -8 =FF (Jh e f+3af
and (21)
_25 2 42/, 2 2 _
n2 4 F  q Al + 3A2 4A1A2)

Note that the quantity ny is of the order of fh’ whereas Ny

is of the order of fhz.
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Using this value of Ngs Eq. (16) can be written as

2

A fh + (no -3+ 61) fh + SJh + 62 = 0 (22)
where we have put
17 5 25 .2 \
[ e R - 1
A= "2~ 3F aa
e 23 22 _4 10
$;=FF & J-Fn+3T I
? (23)
and
20
§y=31m Y )

Note that 51 is approximately of the order of fh’ whereas 52 is
of the order of fhz.
Equation (22) gives the required expression for fh which, correct

to the second order of small quantities, is

1 (53, + 8.) ¢
o= |- (55 +6,)+—2 21
(ng = 3 (no -3)
: (24)
) 25 A 3
2
(no - 3)

It is interesting to see that in this development, the expression
for fhcorresponding to the first order theory is

5Jh

3 ~-n

fh =

(25)
0
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General Solution of the Problem of Hydrostatic Equilibrium

To solve the problem of hydrostatic equilibrium we have to examine

hydrostatic Eq. (24) which can be written as

F(m, H, Jh’ fh) =0 (26)

In terms of the basic parameters, the above equation can be written as

F(C, A, fh’ w, 3, M) =0 (26a)

If the hydrostatic equilibrium exists, the figure of the earth predicted
from the external potential theory should be coincident with the
hydrostatic figure (See Footnote, p.37 ). This gives an important boundary
condition of the problem, i.e., if the hydrostatic equilibrium exists in
the earth's interior, KEgs. (5) and (24) must match at the outer boundary

of the earth. Hence,

¥F(m, H, J,_, fh) = G(Jh, fh)
or more specifically,
1 (5J, + 8,) 8 25 A J 2
(55, +8,) + —B—2 1, h
h 2 2
3-ng 3 -1, 3 -y
27
N
=3 Jh + Fl Jh + F2

where
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m + —é'ng

56

vrd
[}
NII—‘

Other quantities on the right hand side of Eq. (24) are defined
previously.

Equation (27) gives the general solution of the problem of
hydrostatic equilibrium. The particular solutions are obtained by
examining the left-hand side of Eq. (27) in the form of Eq. (26) or
(26a) and by properly defining the basic parameters occurring in that
equation. If the rate of rotation w and the mass M are chosen to be the
same for the hydrostatic earth and the real earth, there are three

possible solutions which correspond to the following boundary conditions

(w, My a, C) = constant
(wy, M, a, H) = constant (28)
(w, My, a, J) = constant

Graphical solutions of the general hydrostatic Eq. (27) are given in
Figure 1 for the first two cases and in Figure 2 for the third case.
The plots of the function G(Jh, fh) are shown by solid curves, whereas
those of F(m, H, Jh’ fh) subject to the set of boundary conditions
mentioned in Eq. (28) are shown by broken~line curves. It is obvious
from the shape of these plots that each set has an unique intersection
point in the region in which we are interested. Note that in Figure 1
the abcissa is scaled in terms of J2h where J2h = %—Jh. In all the
solutions, AS has been taken equal to zero. It is shown later (see
Fig. 3) that reasonable variations in values of AS do not affect the
solution critically., The rate of rotationw is treated as constant
via the parameter m in all the solutions given in Figures 1 and 2.
For the case when (w, M, a, C) = constant, the hydrostatic

flattening is £ -1 299.75 * 0.05 and the hydrostatic J is Jh = 1607.49

h
X 10-6. This value is about the same as reported by Henriksen (1960),
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337400
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Fig. 3. Influence of AS on the value of fh.

0'Keefe (1960), and in a previous paper by me (Khan, 1967). However,
as much as one can gather from the post-satellite literature, the method

reported previously (0'Keefe in footnote to Munk & MacDonald, 1960)

certainly does not profess (Khan, 1968a, b) to take care of the boundary
condition noted above. The fact that the two methods give identical
numerical results can be traced to de Sitter's specific elimination of
the geopotential coefficient J from the hydrostatic equations in order
to obtain his equations for the hydrostatic theory. This elimination
remained undetected (Khan, 1968a, b) when initial results on hydrostatic

flattening were reported and led to the erroneous belief that the then-
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reported value of hydrostatic flattening was obtained from a solution
of the hydrostatic equation alone. The net effect of this elimination
is, in fact, the same as allowing for the above-noted boundary condition.

However, it should be clear now that if the above value of £, is pre-

ferred, the method reported in this report is the correct wa; to obtain
it. As usually believed, for this model the hydrostatic flattening is
smaller than the real flattening.

The merit of this solution lies in the fact that the polar moment
of inertia of the hydrostatic earth is equal to that of the real earth,
as obtained from observational data on the geopotential coefficient J
and the dynamical flattening H. Consequently, it is possible to avoid
certain dynamical complications (mentioned later) which arise when the
moment of inertia of the hydrostatic model is taken different from that
of the real earth.

For the case when (w, M, a, H) = constant, the hydrostatic flattening

is fh = 297.29 * 0,05 and the corresponding hydrostatic J is Jh = 1623.225
X 10"6. This value of hydrostatic flattening is very near the flattening

obtained in pre-satellite times. The pre-satellite method essentially
consisted of predicting J from the hydrostatic theory and using it in

Eq. (5) to compute hydrostatic flattening which was then assumed to give

the best approximation to the real flattening. Thus, the pre-satellite
method will tend to give similar results as the solution proposed here,

if the only data used in the solution is the dynamical flattening H.

Note that the precise determination of the geopotential coefficient J has
not changed the method of solution. It has merely made possible the de-
termination of the earth's moment of inertia which provides a better initial

datum than the dynamical flattening H.

However, the polar moment of inertia of this hydrostatic model is
greater than the real earth--and tﬁis introduces some dynamical
complications., It would imply a change in the radial stratification of
the earth, such as would result because of the equatorial bulge of the
real earth being more compressed and consequently the real earth having
a higher density gradient than the hydrostatic state would require.
This creates the problem of suggesting some reasonable physical

phenomenon responsible for such a process. Some increase in the polar
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moment of inertia could possibly be accounted for by the fact that
when the earth readjusts to the equilibrium shape defined by the above
model, there will be an increase in the polar moment of inertia because
of the expansion of the equatorial bulge to conform to the new figure.
Approximate calculations show, however, that this factor can account
only for a small fraction of the total variation required by this model.
This is the hydrostatic model of pre-satellite times when the geo~-
potential coefficient J for the real earth was not precisely known and
hence, the moment of inertia of the real earth could not be determined.
For the hydrostatic model (w, M, a, J) = constant, the solution of
the equation G(Jh, fh) = 0 will obviously give a constant value of

flattening, as can be seen from Figure 2. The hydrostatic flattening

for this model is £ -l 298.29 * 0.05 and the corresponding hydrostatic

h
value of H is H = 3260.50 x 10_6. However, the polar moment of inertia

of the hydrostatic model is greater than that of the real earth. The
dynamical problems encountered in this case are again of a similar
nature to those enumerated for the second hydrostatic model.

The results of the above three solutions are summarized in Table 1.

.TABLE 1. Possible Hydrostatic Figures Obtained
from the General Solution a, and Data for the Real Earth b

2

Hydrostatic 6 6 2 - - -
rosra 3, % 10 Hx 10 C/Ma A/Ma® £, 1 £, 1 _ gt
(ws, M, a, H)  1635.225 3273.64 0.33300851 0.33191836 297.29 + 0.05* -0.96
(w, M, a, C) 1607.49 3240.43 0.33071598  0.32964432 299,75 *+ 0.05* +1.50
(w, My a, J) 1623.969 3260.50 0.33204876  0.33096611  298.29 * 0.05% 0
b
J x 10° 1 x 10° c/Ma® A/Ma® £

1623.969+ 3273.64 %% 0.33071598  0.32963333  298.25 * 0.05

* Based on m = 0.00344980 (Khan, 1967: Jeffreys, 1964)
+ Kozal (1964)
*% Khan (1967)




-2~

Choice of )\
———g

In the above discussion the value of AS is taken as zero. As
pointed out earlier, the function F(n) always lies very near unity,
its maximum deviation being of the order of 10—4. As which is the value

of A for the outer surface, is given by Bullard (1948) as

A, = (1.6 ¢ 1.8)107%

This estimate, however, is based on the density distribution
suggested by Bullen (1940, 1942). Jeffreys (1963), using a simplified
density model, finds AS = 1.3 x 10—4 and points out that if XS = 0

instead, the resulting £ 1is greater by 6 x 10_7 only. Khan (1968a)

showed that slight varia:ions in the value of AS do not affect the
‘value of fh to any great extent, as is apparent from Figure 3.
It seems legitimate, therefore, to take AS = 0 for initial calculations.
Note that Henriksen (1960) also took A = 0.

Table 2 summarizes some of the more important values of AS and g

as obtained by different investigators.

TABLE 2. Comparison of Some Hydrostatic Theory Parameters

}‘S r"S
de Sitter  (1924) (4.4 % 1.5)107%  0.5589
Bullard (1948) (1.6 * 1.8)10‘4 0.565
Jeffreys (1963) 1.3 x 107% 0.5587

Khan (1967) —_— 0.5869
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Minimum Strength of the Earth

The stress differences arising because of the departure of the
earth from hydrostatic equilibrium are given by Jeffreys (1943,
1963). On the supposition that the stresses are supported by strength
(1) down to the core, or (2) down to a depth of 0.1 of the earth's
radius, the strength S needed to support the P2 inequality is given as
follows:

For the hydrostatic model (w, M, a, C) = constant:

Case 1

S = 4.3 x AJ, x 1012 dynes/cmZ = 4.7 % 107 dynes/cm2
Case 2

S=7.9x AT, x 1012 dynes/cm2 = 8.7 x 107 dynes/cmzv

Gravity Field Referred to the Equilibrium Figure

The first hydrostatic medel (obtained from the earth‘s polar
moment of inertia as the datum) is used as reference for computing the
anomalous gravity field of the earth from Kozai's {1964) zonal and
Gaposhkin's (1966) tesseral harmonic coefficients. If the anomalous
gravity field is to be used for any studies regarding the earth's
crust and mantle, it must be computed with reference to the equili~

brium figure (0'Keefe and Kaula, 19633 O'Keefe, 1965; Fischer, 1967}

of the earth, because such a figure is a figure of zero stress, and
departures from it will, inter alia, be indicative of the hydrostatic
stresses existiﬁg in the earth's crust and mantle. Figure 4 shows

the gravity anomalies referred to an ellipsoid with flatteming 1/299.75.
The gravity anomalies referred to the international reference ellipsoid
are shown in Figure 5. It is obvious from a comparison of Figure 4
with Figure 5 how the picture of the anomalous gravity field is a

- function of the model adopted as the reference. This is also evident
from some of the discussions given by Q'Keefe and Kaula (1963) and

Fischier (1967). In any case it is clear that the satellite-determined
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gravity anomalies referred to any of the reference models do not

exceed about 43 milllgals for an 8th harmonic rep
Figures 14 and 5 'I'he

) is negative and occur

gravity field as seen fro“

gravity anomaly in Figure
Ocean just to the south of Ceylon. The magnitude of
reduces by about 11 milligals to about 32 mllligals (Fig. 4) when the
equilibrium figure‘ls used as the reference. However, in that case
the positive gravity anomaly over the islands of New Gulnea and Borneo
becomes accentuated by an almost equal amount and becomes the most
pronounced feature. Also the negative gravity anomaly located to the
east of Zapadno and Sibirskaya in USSR becomes more pronounced by
about 11 milligals. The well-pronounced positive anomaly to the south-
southwest of Iceland in Figure 5 is less pronounced in Figure 4., The
two negative anomalies flanking the southern tip of North America are
equally observable in both the representations, while the‘positive
anomaly over and around Peru is much more pronounced in Fignre 4, The
negative anomaly over the Hudson Bay area is decidedly more “pronounced
in Figure 4. Several other contrasting features of interest camn be
pointed out from a study of the two gravity field representations. It
is interesting to compare the variance of the anomalous gravity field
with respect to the various reference figures: |

Variance of the anomalous gravity field with respect to -the

equilibrium figure = 145 mgalz.

Variance of the anomalous gravity field w1th respect to the inter-

 national reference ellipsoid = 136 mgal

Figures 6 and 7 show the geoidal undulations with respect to
the international reference ellipsoid and the equillbrium figure,
respectively. Figure 8 is the astrogeoid computed with reference to a
flattening of 1/299.67 and is taken from Fischer (1967). A comparison
of Figure 7 with Figure 8 shows somekvery interesting features. The
geoid depression erbiatitude 60° north of Tomsk in USSR is coincident
in location in Figures 7 and~8 but it does not seem to mafch very
closely in magnitude.‘ However, there is no astrogeodetic data farther
north of latitude 60° ln the 1ocat10n of thlS particular depression and

it is difficult to say whether or not thlS depression will deepen farther
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north. The geoidal low over Hudson Bay is equally well represented in
both figures. A comparison of the geoidal high over the northwest and
west coast of South America in Figure 7 with its counterpart in Figuré
8 is strikingly noteworthy. Over Africa the two geoidal representations
do not agree too well, but it should be noted that astrogeodetic data
for the continent of Africa are very sparse. The two well-pronounced
features of the satellite geoid, i.e., the geoidal low in the Indian
Ocean and the geoidal high over the Solomon Islands area, cannot be
compared because practically no astrogeodetic data are available for
those areas, The agréement in the major features of the two geoidal
representations computed from two independent sources is, among other
things, indicétive of the appropriateness of the figure of reference

to which the satellite and the astrogeodetic geoid are referred.

Review of the Previous Methods

Below we give a very brief review of the previous methods, examining

them in perspective in the light of the general solution.

Pre-~Satellite method:

If we eliminate Jh from the right-hand side of Eq. (15) and (16)

with the help of Eq. (4), we obtain

v 1+n

_ 1 1.2, 2 2 .. 2 4 2 s .
q=l-Fm+g5E " +57mf -5 1 3fh+9fh)———'——"l+)‘ (29)
S
5 10 2.4_2 6
Y - 2 - e Prasiuadl — -
nsf =5m 2f' + 21 ™ + 7 fh 7 m fh (30)

The second order terms in Eq. (29), i.e., the terms containing
fh2 and m fh’ ultimately become 0(f3) vwhen they are multiplied by f on
substitution in Eq. (30) and drop out. Their inclusion is desirable,
however, to show exactly where the different terms become negligible.
With the exception of the second-order terms, Eq. (29) and (30) are the
same as de Sitter's equations (21) and (22) in his 1924 paper.
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The method adopted by de Sitter is discussed in detail in numerous
papers (de Sitter, 1924, 1938; Bullard, 1948; Khan, 1968a). H is taken

as the initial datum and an attempt is made to find a value of Jh
and H being

2

which would be compatible with the selected value of H (both Iy
functions of m). This is done by estimating a quantity q = 3/2 C/Mae
(Jh = qH) from a knowledge of the internal density distribution of the
earth (de Sitter, 1924; Bullard, 1948). Once Jh is determined, Eq. (5)
will give the corresponding hydrostatic flattening. A serious disadvan-
tage of the solution obtained by this method is that the moment of inertia
of the hydrostatic model, constructed in this way, is greater than that

of the real earth. This creates some dynamical complications as discussed
before. However, it must be appreciated that de Sitter's whole effort

was really directed to devise a method which would give the best approxi-
mation to the real flattening of the earth, not necessarily the hydrostatic

flattening, in the context of the information available in his time.

Other post-satellite methods:

Jeffreys (1963) has given an excellent numerical method based on a
simplified density model. He computes the various hydrostatic parameters
from the first-order theory and evaluates the second-order correction
terms by the numerical evaluation of the appropriate integrals. The
method reported in this paper could be really regarded as a counterpart
of Jeffreys' (1963) method with the exception that I have employed
de Sitter's development of the hydrostatic theory.

In the previous applications of de Sitter's development to compute
the hydrostatic flattening, however, it is usually claimed that using
satellite-determined J and dynamical flattening H, and hence

knowing the polar moment of inertia of the earth, f, should be computed

from the hydrostatic equations alone without using gny controls from
the external potential theory. If this is accepted, the use of de
Sitter's (1924) equations is automatically ruled out because these
equations are derived with the help of external potential theory.
Consequently, the modified equations (Khan, 1968a) should be used, but

in that event, the equations cannot be solved because of the explicit
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TABLE 3. Comparison of Hydrostatic Flattening Values*

Pre-Satellite Method

{Based on the dynamical flattening H as the initial datum)

g~
de Sitter  (1924) 296.92 % 0.136
de Sitter  (1938) 296.753 + 0.086
Bullard (1948) 297.338 + 0.050
Jeffreys (1952) 297.299 + 0.071
Jeffreys (1963) + 296.75 % 0.05

Results Obtained After the Satellite-determination of J

f, = hydrostatic flattening; f = 1/298.25 ¢ 0.05

(a) Based on the polar moment of inertia as the initial datum

£, " A
Henriksen (1960) 300.0 +1.75
0'Keefe (1960) 299.8 +1.55
Jeffreys (1963) 299.67 % 0.05 +1.42
Khan (1967) 299.86 ¢+ 0.05 +1.61

(b) From a solution of the modified equations alone,

using polar moment of inertia and the satellite-determined J

296,70 % 0.05%% -1.55

297.04 t 0.05t+ -1.21

*See also Table 1.

tUsing the pre-satellite approach.

**Baged on m = 0.00344980 (Khan, 1967a; Jeffreys, 1963), H = 0.00327364 (Khan,
1967), and Jy = 0.001082645 (Kozai, 1964).

ttBased on m = 0,00344992 (Henriksen, 1960), H = 0,00327070, and
Jz = 0.00108270.
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appearance of J  on the right-hand side of the equations and because

of the necessits of treating this quantity as an unknown in the solution.
1f these modified hydrostatic equations are solved with the help of
satellite-determined J (i.e., J = Jh) one will obtain the results

shown in the last section of Table 2. The first part of Table 2 gives
the results obtained from different investigators using de Sitter's
equations in a way which is pertinent to the discussion given in

this report.

Table 3 lists the results obtained from the modified hydrostatic
equations (Khan, 1968a) along with the results of other investigators
who obtained their values using de Sitter's equatioms.

The important work of Ledersteger (1967) is not discussed because

the discussion given here does not pertain to his method.

Summary and Conclusions

Since the hydrostatic geopotential coefficient J, appearing
explicitly on the right-hand side of the modified hydrostatic
equations, must be treated as an unknown in the solution of the
hydrostatic equilibrium problem, these equations become difficult
to solve all by themselves and one has to look for an additional
boundary condition. This boundary condition is inherent in the definition
of the hydrostatic equilibrium and is derived from the external
potential theory which neither assumes nor discounts the existence
of hydrostatic equilibrium in the earth's interior. It requires that
the equilibrium figure of the earth coincide exactly with that pre-
dicted from the external potential theory, if hydrostatic equilibrium
exists in the earth's interior, and is stated in terms of Eq. (5).
The solution obtained with the help of this boundary condition turns
out to be sufficiently general so that the three most frequently
mentioned particular solutions in literature can be obtained from this
by merely defining the appropriate initial datum. The only geophysically
meaningful model, of course, remains the one in which the polar or
mean moment of inertia is held equal to that of the real earth,
calculated from the satellite-determined J and the dynamical flattening

H computed via the constant of precession of the real earth. For
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this hydrostatic model the flattening is fh—l = 299.75. The solution
is significant in that it demonstrates the correct structure of the
problem of hydrostatic equilibrium of the earth. Taking the equilibrium
figure as reference, the minimum strength of the earth required to
support the hydrostatic stresses (considering the inequality due to
second zonal harmonic only) is 4.7 x 107 dynes/cm2 in case the stresses
are supported by strength down to the core, and 8.7 x 107 dynes/cm2
in case the stresses are supported by strength down to a depth of 0.1
of the earth's radius.

The anomalous gravity field of the earth with respect to the
equilibrium figure and the international reference ellipsoid is shown

in Figures 4 and 5. The equilibrium figure provides the best reference

for computing the anomalous field because such a field would alsoc

reflect the hydrostatic stresses which become very important in
geophysical studies on a regional scale. A comparison of Figures &4
and 5 shows the extent to which the anomalous gravity field depends on
the reference figure used. Figures 6 and 7 show geoidal undulations
with respect to the international reference ellipsoid and the equi-
librium figure. Figure 8 shows the astrogeoid referred to the equi-
librium figure. The agreement between the various extremums in Figures
7 and & is noteworthy and reflects the appropriateness of the reference

figure to which both geoids are referred.
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(Footnote for p. 17)

It was brought to the author's attention that this was also recognized

by Caputo (1965), who compared the hydrostatic flattening obtained from

several different assumptions. However, Caputo did not point out the

problem mentioned in this report, i.e., the incompleteness of the

system of equations (15 and (16), if Jh is treated as an unknown, and,

hence, does not deal with the problem considered in this report,
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